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Finite Element Analysis of Large-Amplitude Panel Flutter

of Thin Laminates

Iain R. Dixon* and Chuh Meit
Old Dominion University, Norfolk, Virginia 23529

Large-amplitude panel flutter of thin rectangular composite laminates is studied using finite elements, The
principle of virtual work is used to develop the equations of motion of a fluttering rectangular panel. The large
deflections are represented by von Karman strain-displacement relations and the aerodynamic load is repre-
sented by the use of the quasisteady first-order piston theory. The equations of motion are solved by implement-
ing the lineared updated-mode with a nonlinear time function (LUM/NTF) approximation. Critical flutter
values and limit-cycle amplitudes for graphite-epoxy and boron-epoxy laminates at various boundary condi-
tions, lamination orientations, and numbers of layers are investigated.

Nomenclature
a = panel length
a1, [4,] = element/system aerodynamic influence
matrices

[A], [B], [D] = extensional, coupling, and bending stiffness

of a laminate

c = maximum deflection

Dy, = D(1, 1) with all fibers aligned in the x
direction

& = nondimensional aerodynamic damping

[e], [G] = element/system aerodynamic damping
matrices

[k, [K] = element/system linear stiffness matrices

[m], [M] = element/system mass matrices

[n1], [N1] = element/system first-order nonlinear
stiffness matrices

[n2], [IN2] = element/system second-order nonlinear
stiffness matrices

u,v,w, = element displacement functions

{w}, (W} = element/system displacement vectors

a = coefficient of thermal expansion

0 = lamination angle

K = eigenvalue

A = nondimensional dynamic pressure

{®} = mode shape

Q = complex panel motion parameter

W, = reference frequency

Subscripts

a = aerodynamic

b = bending

c = coupling

cr = critical

! = linear, limit cycle

m = membrane

nl = nonlinear

0 = slope
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Introduction
HE investigation into the effects of air flowing at super-
sonic speeds over aircraft structures has been conducted
in detail. Pressure distributions from the airflow may influ-

.ence the aircraft in several ways. One concern, panel flutter,

occurs when the aerodynamic pressure becomes great enough
to make the panel vibrate in a self-excited state. The panel is
usually configured in such a way that one side of it is exposed
to the airflow and the other side is part of a structural cavity,
as shown in Fig. 1. The onset of flutter may cause a cata-

strophic failure; however, in many cases, due to the material

and configuration of the plate, a fatigue failure is possible. It
is probable that the flutter oscillations will have a large de-
flected amplitude; thus it is important to investigate the limit-
cycle motions as well as the flutter boundaries.

Two survey articles which give an overview of panel flutter
theories and tests are given by Dowell! and Reed et al.? Classi-
cal solutions of nonlinear isotropic panel flutter are found
usually through the use of Galerkin’s method in the spatial

‘domain and found by techniques such as numerical integra-

tion,35 perturbation,%’ and harmonic balance’:? in the time
domain. An extension of the classical study into orthotropic
plates was conducted by Eslami® and Librescu'® using the
harmonic balance method. Finite elements analysis of linear
panel flutter was first reported by Olson'’'? for two- and
three-dimensional cases. Yang and Sung!® studied three-di-
mensional isotropic panel flutter as well. An extension of the
finite element method into nonlinear oscillations of two-di-
mensional isotropic panels was given by Mei,'* Rao and Rao, !’
Sarma and Varadan,!¢ and Gray et al.!” In addition to flutter
of two- and three-dimensional isotropic plates, Xue and
Mei'®-2 also considered the effects of temperature. Mei and
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Fig.1 Schematic of an aircraft panel subjected to an aerodynamic
load. )
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Weidman?!' and Han and Yang?? extended the finite element
methods to nonlinear, three-dimensional rectangular and tri-
angular isotropic plates. The study of nonlinear flutter of
composite plates was investigated by Dixon and Mei?*?* and
Liaw and Yang.? ‘

A finite element analysis of large-amplitude panel flutter of
arbitrarily laminated composite plates is presented here. The
element and system equations of motion are derived using the
principle of virtual work. The solution procedure details the
linearized updated mode with a nonlinear time function
(LUM/NTF) approximation which determines the limit-cycle
motions. Results which investigate the effects of varying the
boundary conditions, lamination orientations, and numbers
of layers of graphite-epoxy and boron-epoxy laminates fol-
low.

Mathematical Formulation
Rectangular Finite Element

The following derives the system equations of motion for a
composite plate in flutter. The plate considered has a length a,
width b, and thickness 4. The air flows along the x axis and
edges are either simply supported or clamped. Using rectangu-
lar elements with six degrees-of-freedom per node, the plate is
discretized into a certain number of finite elements. The 24-¢l-
ement nodal displacements are separated into out-of-plane
(bending) and in-plane (membrane) displacement compo-
nents:

{w}= {wm} )

The component {w, } is comprised of w, w,, w,, w,, and the
component {w,, } is comprised of u and v. The element bend-
ing displacements w are approximated with a bicubic function
and the element membrane displacements, u and v, are ap-
proximated with bilinear functions

W =a; + X + a3y + ax? + asxy + agy? + ax® + agx?y

+ agxy? + @y? + auxX’y + anx’y + apx®? + apxy?

+ a1ax3y? + aisx?y’ + aex’y? 2
u =by + byx + by + byxy 3)
v=b5+b(,x+b7y+bsxy (4)

The time-dependent generalized coordinates, {a} and {b},
are related to the nodal displacements by their respective
transformation matrices given by

{a) =I[Tp}{wy)} G

and

(b} =I[Tnl(Wnm} ©)

From the large deflection von Karman strain-displacement
relations, the strain can be written as

€x €x Kx
& (=9 €& (t2) & @
o
Yxy Yxy Kxy

where {€°} and {«]} represent the in-plane and bending (curva-
ture) strain vectors, respectively. The strains and curvatures in
terms of the displacement functions are

o
€y U,x 1 W,y
0 —_ _ 2
& (= Viy + 2 W,y )
2W oWy

Yoy Uy + Vo
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Ky Woxx
Ky (= — Wayy (9)
Kxy 2W,y

Transverse shear strains are neglected because of the thin-plate
assumption, thus v,, and v,, are not included. The in-plane
strains in Eq. (8) can be represented as

(e} = {en} + (g} = {en )} + V2[01{G) 10

where the strain vector due to the large deflections, {€9}, is
separated into a product of the bending displacement’s slopes.
The components of this product are

Wy O
W= 0 w, (11
W,y W,y
(G} = {W} (12)
W,y

The von Karman strains are represented in terms of the gener-
alized coordinates and time-independent, spatial components as

fe} = {em) +{€f} +z{x]

=[Cnllb} +2[01[C) {a} + z[Cplia) 3)

The stress-strain relations for the kth layer of a laminate with
a lamination angle 6 between the principal and the body axes
are

Ox Qu Qn Qns €x
oy ¢ =| Quz On QO €
Qs O Dss [\ 7wy

14

Txy Jk

The matrix [Q] is the transformed reduced stiffness matrix
comprised of the engineering constants and the influence of
the lamination angle 8.

From Egs. (7) and (14), the stresses for the £th layer is then

(o} = [Ql(fe) + 2 (x}) (15)
The resulting forces and moments of the plate are determined
by substituting Eq. (15) into

w2
{0}, (1,2) dz

—h/2

({N}, (M}) = j (16)

Equation (16) is integrated over the thickness to obtain the
forces and moments of a general laminate, where

N) _[a B [e"
M) |B D|(«
The matrices [4], [B], and [D] are the extensional, coupling,
and bending stiffnesses of the laminate, respectively.
The force and moment terms can be expanded in terms of

the generalized coordinates [see Eq. (13)] where the force
'vector is comprised of membrane, slope, and bending terms:

amn

(N} =1A1{en} + (€}) + [B] (]}
= [A1[Cnl (] + 12[A1[0)[Col {a) + [B][C,l{a)

= {Nm} + {Np} + {Np} 18
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The moment vector similarly becomes
(M} = [Bl({en,} + {€§}) + [D1{x}
+ 2[B1I0lICsl {a} + [D]IC,1{a)
{My} + (M} 19

= [B][Cnl (D}
=My} +

Equations of Motion

The principal of virtual work is used to derive the equations
of motion, where

OW = Wiy — 6Wexe = 0 (20)

The virtual work due to internal stresses, considered first, is
él’Vim = j a,-jaeij dv (21)
| 4

Taking the variation of the strain in Eq. (7) and substituting
yields

h/2
aWim=j “ ({an}'+z{ax1’)ia}kdz]dA (22)
A

—h/2

Thus, from Eq. (16), the internal virtual work becomes

aWim=j [(3e°){N} + (ox}*(M}] dA 23)

A
The variation of the in-plane strains and curvatures become
{62} = (8D }'[Cp]* + {oa ) ICI'[6) (24

and
{0}t = {6a }'[Cp) (25)

After substituting Egs. (18), (19), (24), and (25) into the inter-
nal virtual work equation, the following expression results:

Wiy = L [(85 11C1 + (82} IC161) ([ATIC,] (b )

+ VIANB)IC {a) + [BIIC,){a)}) + (8 }ICy) (IBICal (D)
+ BBIBIGa) + [DIICs1(a))] dA (26)

After transforming from generalized coordinates to nodal dis-
placements using Egs. (5) and (6), simplifying through, and
separating into element stiffness matrices, the virtual internal
work becomes

Wi = (W ) (o] + Y311 1 ]) (W5 ) + (oW Tl (W)

+ (8wp ) (ko] + Y5In1,)e + 2[n1,] + Y5[n2,]) (wy )

+ (6W5 ) ((Kom] + Y211 15m]) (Wi} @7

Refer to Ref. 24 for a more detailed derivation of the virtual
work and element matrices. The element matrices [k,] and
[k.] are linear bending and membrane stiffnesses, respec-
tively. The linear element matrices [k,,,] and [k,,;] are due to
the membrane-bending coupling laminate stiffness [B]. The
first-order nonlinear stiffness matrices [n1,,], [n1l.], and
[n1,] are linearly dependent on the deflections. Matrix [n1,],
is from the large deflections and the coupling laminate stiff-

ness. The second-order nonlinear stiffness [#2,]} is quadrati-

cally dependent on the deflections.

The virtual work due to external forces is
Wy = j Bbu; dV + S T:6u; dS 28)
v s

In this case the body forces, which are defined by the inertia
terms in each coordinate direction, is integrated through the
thickness 4. This is combined with the surface tractions, de-
fined by an aerodynamic pressure term, to become

OWey = j [6w(Py — phW i) — Su( phu i) — 6V (phv,,)] dA
A

29

The aerodynamic load P, is described by the first-order piston
theory. This theory calculates the aerodynamic load on the
panel from local pressures generated by the body’s motion
relative to the normal component of the air velocity.!»>6 The
aerodynamic pressure, described in terms of slope and velocity
components, is represented as

2g M2-2)1 >
Py= (w22, 30
Mi—l(wx oz-nv" 30
or
D
Pa=~<)\ ‘31°w,x+g"D‘1°w,,> 31
a wod

where g = p,V?/2 is the dynamic pressure, V is the airflow
speed, p, is the air density, M, is the Mach number, and a is
the panel length. The constant Dy, is the resulting D(1, 1)
value in the bending stiffness matrix for a unidirectional 0-deg
laminate. The 0-deg angle is parallel to the x axis and is the
direction of the airflow. The nondimensional dynamic pres-
sure and aerodynamic damping coefficient are given by

2ga’
= ————— 32
Dy, VMZ -1 G2
V(MZ ~2
oV (M, ) 33)

87 phu, (M2 = 17

where w, = (D11,/pha*)" is a reference frequency used to nor-
malize the equations of motion. Equation (31) is substituted
into the aerodynamic pressure term of the external virtual
work equation. This constitutes the aerodynamic influence
and damping matrices. The inertia terms in Eq. (29) are repre-
sented as mass matrices. The external work expressed in terms
of the element mass, aerodynamic damping, and influence
matrices becomes

Wy, = {6wb}'<—>\[aa1{wb} ——ff [g](%})

1 1
= =3 {owp V' [mp) (i} — — (0Wm } [} {0 ) €2
@ W,

o o

Equations (27) and (34) are substituted into Eq. (20) to obtain

‘the elemental equations of motion

o3I 3 R PO
W2l 0 my| W, wo |0 0} Qv
@ 0| [k fhom] 1
+<A[o 0]+[ ] 3[ ]
1l (nlp). +nlp nlpy
S Rty | M H

I
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Equation (35) represents a nonstandard eigenvalue problem
due to the skew Symmetric orientation of the aerodynamic
influence matrix {a,]. The system equations of a composite
plate in flutter, which are assembled from the elemental equa-
tions, are represented as

S

" [M]{ }+—~[G]{

W

Wi+ <>\[Aa] + K]+ [Nll

1 ) o
+ §[N21>{W1 = (0) (36)

where, from Eq. (1)

Won

(W) = {W”} 37)

Solutioh Procedure

Neglecting the in-plane inertia effects in Eq. (36) resultsin a
relationship between the membrane displacements and the
bending displacements described by

W) = —Kn] (K, o] + BINL) (W] (38)

Replacing { W}, } in the system equations with Eq. (38) yields

1 . " .
— [Mp1{ Wy} + 8 [Gl{W,} + (K], + IKlw) { W} = {0}
wj We (39)

where in this case, the linear stiffness matrix is

XY = MAL] + [Kp] = [Kpm] K] ™ [Kmp )

and the nonlinear stiffness matrix is

Kl = = ValKom][Kn] '[N + 2IN1,] + V2[N1,),

+ YIN25] = VN 1] [Kn] L (IK, ] + V2N 1]
The solution of Eq. (39) is determined by assuming the
deflection to be in the form of a single eigenvector, where

(W} =c{®]e™ (40)

The vector {®,,} is generally complex and € is a nonzero scalar
constant which represents the amplitude of the panel deflec-
tion. In the exponential term, @ = o + iw is the complex panel
motion parameter. The variable « is the damping rate and o is
the frequency. Substituting the assumed response into Eq. (39)
results in the following eigenvalue problem:

e(—kIMp] + [K]; + K1) (@ e = (0) (4D
where the nondimensional eigenvalue is
K= — (Q/‘»*)o)2 ~ 8a(Q/ o)
The eigenvalue includes the damping coefficiént so that the
aerodynamic damping matrix can be absorbed in the mass
matrix. This is possible since [M,] = [G].
By expressing e as a complex quantity in Euler form and

requiring both coefficients of sin wt and cos w to vanish, then
Eq. (41) can be written as two separate equations

ce®(~«k[Mp] + [K1; + [K1u) (®pJcos wt = (0} (42a)
ice(— k[My] + K + [K1w){®p }sinwt = {0}  (42b)

Since ¢ is nonzero, Eq. (39) is for a constrained system and the
- solution is a nontrivial one. Equations (42a) and (42b) repre-

sent the same eigenvalue problem. To solve Eq. (42), the
nonlinear matrix [K], needs to be evaluated. Also, since all of

" the system quantities used in developing Eq. (39) are real, it

must be concluded that the nodal response quantities must
also be as real. As is generally the case with most nonlinear
problems, numerous methodologies are available to obtain
linearized solutions.!*% Here, this is accomplished by employ-
ing the linearized updated-mode with a nonlinear time func-
tion (LUM/NTF) approximation.t’2%23:2* Where, in the itera-
tive solution procedure, the nonlinear stiffness [K],; is
reevaluated after each iteration using the updated panel de-
flection and the nonlinear time functions are approximated to
simple harmonic functions by neglecting the higher harmon-
ics: To evaluate element nonlinear stiffness matrices [n1,,,],
[n1,5]), [n1]., and [n2,], the corresponding element dis-
placement vectors {w;} are needed. They can be approxi-
mated from Eq. (40) by normalizing the eigenvector as fol-
lows. Recognizing that {w, } is real, take only the real part of the
normalized Eq. (40) )

{ Wb } _Z:e—-‘ { I‘I’b |COS(6 ﬁk)}COS wl (43)
H®p )i |

The quantity |{®;), | is the magnitude of the largest displace-
‘ment component of the eigenvector {®,} and B, is the corre-
sponding phase angle. Next, denote ¢ = ¢e* as the damped
amplitude. Thus, it is clear from Eq. (43) that the sign of the
damping parameter controls the stability of the solution. The
solution is stable for all « that are less than zero. When « is
equal to zero, ¢ = ¢ and the resulting solution corresponds to
that of a limit-cycle oscillation. By letting the normalized
bending eigenvector be

< 1
(@) =7557 @), (1%, lcos(B — Bi)} 49

Eq. (43) becomes
{W,] =c{Py}cos wt (45)

Equation (45) results after Eq. (40) is normalized and scaled to
a given limit-cycle amplitude c¢. Equation (45) is then used to
approximate the various element displacements of the com-
plete panel, {w;, }, and to evaluate the nonlinear element stiff-
ness matrices. Reassembling to a system level, the nonlinear
stiffnesses become a function of the displacement amplitude,
its respective linearized stiffness, and a harmonic term, where

[N1,5]1 = c[N1,p]cos wt (46)

[N1pm] = c[N1pplcos wt 47
[N1p)e = ¢[N1,).cos wt 48)
[N2,] = c2[N2;]cos? wt 49)

The nonlinear stiffness [121,] depends on the in-plane deflec-
tions, which are unknown up to this point. The system in-
plane dlsplacements can be obtained from Egs. (38) and (45)
to be

(W} = —[Kn) " ([Kmp] + V2IN1mp])c (@5} cos ot (50)
the assembled nonlinear stiffness matrix [N1,] becomes
[N1,1 = c[N1,),cos wt + c2[N1,]5c08 wf 51

From collecting the nonlinear stiffnesses, the assembled global
eigenvalue equation becomes

[Mp1{®,} =~ (K1 + [K1n) (%} (2) .
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where the linear stiffness matrix [K], is shown in Eq. (39) and
the linearized stiffness matrix becomes

= 2 —
(Kl = "'\/% [Kpm] [Km]_llNlmb]

— 2 3¢2 V2e —

- lNlbmnKmr’(Tc [Komp] + % [Nlmbl) + Tc [N1,),
3¢2 20 — 2

+ 22 Wi+ 2 W, + € (75 53)

Refer to Ref. 24 for a more detailed discussion of the evalua-

tion of linearized stiffness matrices.
To initiate the procedure, the linear vibration mode is first
considered. From the eigenvalue equation the first mode shape

is used to approximate the nonlinear stiffness matrices. Note

Table1 Composite material properties

Graphite-epoxy Boron-epoxy

E; 30.0 30.0 Mpsi

E 0.75 3.0 Mpsi

G2 0.375 1.0 Mpsi

v12 0.25 0.30

0 2.58799 x 104 1.87629 x 10— 41b-s2/in.4

1T

c/h r

0.8 +

0.6 T

0.4 1

02 +

0 ";‘{'"'%""%""%‘“'ﬂ““%""l
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A

Fig.2 Comparison of nonlinear flutter of a simply supported
isotropic panel.
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Fig. 3 Coalescence of first four eigenvalues of a simply supported,
three-layer, square cross-ply, graphite-epoxy laminate.
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Fig. 4 Coalescence of eigenvalues for nonlinear flutter of a simply
supported, three-layer, square cross-ply, graphite-epoxy laminate.

are then used to determine the linearized stiffness matrix
[N1,]. The linearized stiffnesses are subsequently assembled,:
as shown in Eq. (53), and then used in the linearized eigen-
value problem. To see if the problem is completed, the conver-
gence of the eigenvalue is checked. Normally if the error in the
eigenvalues, after each iteration, is less than 10-5, conver-
gence is considered to be achieved. If convergence was not
achieved, the lowest eigenvector (mode shape) is used to up-
date the linearized stiffness matrices, thus the problem is
reiterated until a converged solution is obtained.

Results

Two finite element grid sizes were used in the analyses.
Orthotropic and isotropic panels are modeled as 3 X 8 ‘‘half
plates,’’ where eight elements lie along the direction of the air
flow. This takes advantage of the symmetry of the panel
flutter deflection. Anisotropic plates are modeled as 6 X 8
“‘full plates’’ since the shape of the flutter deflection may not
be symmetric. Immovable in-plane boundary conditions are
considered in all cases (4 = v =0 along edges). The dimen-
sions considered for the ‘‘full plate’’ analyses are 12.0 X

.12.0 x 0.12 in. The composites considered are either graphite-
epoxy or boron-epoxy where the material properties, from
Jones,? are listed in Table 1.

To verify the solution of the nonlinear panel flutter analy-
sis, comparisons are made between large-amplitude flutter of
isotropic plates. Figure 2 shows a comparison between the
‘present with Dowell® and Xue? for a limit-cycle amplitude vs
dynamic pressure of a simply supported isotropic panel. In the
first case, Dowell uses Runge-Kutta time numerical integra-
tion to obtain classical limit-cycle results using six free vibra-

-tion modes. Xue uses a finite element formulation which
utilizes the LUM/NTF solution approximation. Note that the
damping parameter is 0.01 in Dowell’s case while it is zero for
the other two cases.

In the ¢ase of isotropic panels without the effects of aerody-
namic damping g,, the critical value at which flutter occurs is
normally the point at which the first two eigenvalues, «, and
k,, coalesce. Intersection occurs just as they become complex
conjugate pairs. If damping is taken into account, flutter
would occur when the damping rate becomes positive and thus
the panel motions become unstable.!*?! This would increase.
the dynamic pressure required to instigate flutter as well as the
limit-cycle motions. The effects of damping ( g, = 0) are ne-
glected in the examples that follow, in which case more conser-
vative results are obtained.

Unusual results have been found for selected composite
laminates. Figure 3 shows the coalescence of the first four
eigenvalues of a simply supported, square, three-layer cross-
ply laminate. Note that for this particular case, the eigenvalues
of the first two modes do not intersect. Coalescence occurs

— with the eigenvalues of the first and the third modes and with -
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Fig. S Limit-cyéle deflection of a simply supported, square three-
layer, cross-ply, graphite-epoxy panel.
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02T
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Fig. 6 Limit-cycle amplitude vs dynamic préssure of simply sup-
ported, square symmetric and antisymmetric, cross-ply, graphite-
epoxy laminates with various numbers of layers.

the eigenvalues of the second and the fourth modes. The
reason for the coalescerice of the higher modes are duie to the
differences between E| and E,. Graphite-epoxy, which has a

" high value of 40 for E,/E,, is used in this case. When the ratio
of Ey and E, is smaller, the coalescenice characteristics more
closely resemble isotropic panels.

The curves in Fig. 3 are from small-amplitude flutter and
show the critical value of A. The limit-cycle values are shown
in Fig. 4, for the same laminate, along with the linear values._
Coalescence of the first and third eigenvalues for the nonlinear
cases (not shown for ¢/h =0.2, 0.4, 0.6, 0.8) occurs,in a
similar fashion as the linear case:

Figure 5 shows the centerline deflection of a three-layer,
graphite-epoxy cross-ply laminate. The deflection which is
plotted is shown when A, =342.92, A, = 391.50, and \, =
481.56. The nondimensional dynamic pressures correspond to
limit-cycle amplitudes of 0.2, 0.6, and 1.0, respectively. A
panel with no aerodynamic load would have ‘a small-ampli-
tude, sinusoidal mode shape as a free vibration. However, as
the dynamic pressure iricreases beyond the critical value, the
maximum deflection shifts in the direction of the airflow. This
maximum occurs at a location three-quarters of the total panel
length.

Limit-cycle motions of symmetric and antisymmetric lami-
nates with variable numbers of layers, n, are examined. This
case considers cross-ply laminations of graphite-epoxy with a
constant total thickness of 0.12 in. Figure 6 shows limit-cycle

PANEL FLUTTER OF THIN LAMINATES

amplitude vs dynamic pressure for the simply supported sym-
metric and antisymmetric cross-ply laminates with several
‘numbers of layers. Symmetric composites are the laminates
with an odd number of layers. A 0-deg fiber orientation for
the first layer is considered here. A three-layer laminate is
(0/90/0). Their configuration is symmetric with respect to the
midsurface, thus there is no coupling stiffness [B]. Antisym-
metric composites are the laminates with an even number of
layers. The large coupling effects between the composite layers
are accounted for in the coupling stiffness of these types of
laminates. Interesting results have been discovered when
studying these two types of composites. Note that there is a
large difference in the critical dynamic pressure between a
three-layer and a two-layer laminate (both of thickness 0.12
in.). Even though there is only a difference of one layer, the
coupling stiffness is zero for the three-layer symmetric lami-
nate and is relatively high for the two-layer antisymmetric
laminate. The coupling between the extensional forces and
bending moments has a detrimental effect on the ability for an
antisymmetric laminate to resist flutter. As the number of
layers increases in an antisymmetric laminate, the effect of the
coupling stiffness decreases. It is also interesting to point out
that the symmetric and antisymmetric curves converge to each
other as the number of layers increase.

The characteristics of a-clamped and a simply supported
panel are compared with two semisimply supported panels;
one with a clamped leading edge and one with a clamped
trailing edge. The panels evaluated are square, three-layer,

1 -
c/h
0.8

0.6 |

0.4 7

0.2

L e e B LIt S S S B A S s |

0 .
300 400

Fig. 7 Effect of boundéry conditions on a square three-layer, cross-
ply, boron-epoxy laminate.
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"Fig. 8 Limit-cyele and critical dynamic pressures of simply sup-
ported and clamped, three-layer, square angle-ply, graphite-epoxy
laminates (8/ —0/6).



DIXON AND MEI: PANEL FLUTTER OF THIN LAMINATES 707

cross-ply laminates. The dynamic pressure is plotted in rela-
tion to the limit-cycle amplitude for a boron-epoxy plate in

Fig. 7. As would be expected, the fully clamped and the simply .

supported panels bound the values of the panels that have
multiple boundary conditions. An interesting point is that the
panels with clamped leading and trailing edges have the same
flutter critical point; however, the curves do differ in the
nonlinear region. The slopes of the limit-cycle amplitude vs
dynamic pressure curve for the simply supported panel are
nearly identical to the panel with a clamped leading edge but
the slopes .of the clamped panel is sightly different than the
panel with a clamped trailing edge. Figure 7 of Ref. 17 shows
that the slopes of a clamped-clamped panel and a simply
clamped panel have identical slopes for the two-dimensional
case. Exact duplication of the slopes. of these curves may not
be possible in this case due to the boundary conditions of the
edges parallel to the direction of the airflow. A nearly identical
pattern would probably exist if these side edges of the fully
clamped panel were simply supported.

The mfluence of the lamination angle 0 on limit-cycle and
critical dynamic pressures is investigated. Figure 8 relates the
limit-cycle dynamic pressure, \; (¢/h = 1.0), to its respective
laminate orientation for three-layer, angle-ply (6/—6/6)
graphite-epoxy plates simply supported on all edges and
clamped on all edges. For comparison, A, (¢/A = 0.0) is also
plotted in Fig. 8 for various angles. The nonlinear and linear
cases follow the same trend as @ changes. It is easily seen that
a panel is most resistant to flutter when the fibers are nearly
aligned to the direction of airflow. There are large differences
in the values of between the four curves when there is a strong
stacking sequence (low 6). However, the differences become
small for weak stacking sequences (high 6). The interesting
feature about this figure are the plateaus in the curves. The
curves appear to level off between angles of 90-75 deg and
between 45-15 deg. Conversely, relatively large increases oc-
cur between angles of 75-45 deg and 15 deg and less. A similar
pattern was interestingly found in Ref. 28 for A, of angle-ply
laminates.

Conclusions

An analysis of nonlinear flutter of composite panels using a
finite element method is presented. The corresponding govern-
ing equations of motion are formulated and the eigenvalue
problem is solved by employing the principle of virtual work
and the linearized updated mode with the nonlinear time func-
tion (LUM/NTF) approximation, respectively.

The formulation, which considers the first-order piston the-
ory to model the aerodynamic pressure, provides a reasonable
estimate of flutter, deflection shapes, and frequencies for thin
plates at approximate Mach numbers of greater than V2. The
problem yields a homogeneous set of equations which repre-
sents the “‘self-excited’’ oscillations caused by the aerody-
namic load. This method has been verified by comparing

classic six-mode results for nonlinear flutter of isotropic panels.

Results show that flutter and limit-cycle motions occur
when the eigenvalues of the first and third modes coalesce.
This is due to the differences-in the engineering constants, E;
and E,. For a plate of constant thickness, a symmetric lami-
nate is generally less likely to flutter than an antisymmetric
laminate due to the coupling stiffness. The stiffness and limit-
cycle characteristics of symmetric and antisymmetric lami-
nates converge as the number of layers increase.
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